Daily News Analysis

Indian Railways

stylish_lining

Indian Railways has been facing increased scrutiny due to a series of train derailments and collisions in recent months. These incidents have highlighted significant safety concerns, prompting calls for improved measures to ensure the safety of passengers and operations.

Key Reasons for the Increased Focus on Safety:

  1. Recent Incidents: Multiple derailments and collisions have occurred, drawing attention to potential systemic issues within the railway infrastructure and operational practices.
  2. Passenger Safety: The safety of passengers is a primary concern. Each incident raises questions about how well current safety measures are working and whether additional precautions are needed.
  3. Infrastructure Challenges: Many of India’s railways infrastructure components are aging or in need of upgrade. Issues such as outdated tracks, signals, and rolling stock have been identified as contributing factors to accidents.
  4. Operational Efficiency: There may be concerns about the adequacy of operational protocols, training, and emergency response procedures that could impact safety outcomes.
  5. Public and Media Attention: With more incidents being reported, media and public scrutiny have intensified, creating pressure on railway authorities to address safety lapses.

Reason For Accident

1. Derailment

  • Maintenance Issues: Poor maintenance of locomotives, rolling stock, tracks, and signaling systems can lead to derailments. Regular upkeep is crucial to prevent issues such as worn-out wheels or track faults.
  • Operational Irregularities: Errors in operational procedures or failure to adhere to protocols can also contribute. For example, incorrect loading of cargo or mismanagement during train operations can destabilize the train.

2. Human Error

  • Railway Staff: According to Indian Railways data, approximately 75% of derailments are due to human errors by railway staff. This can include mistakes by train drivers, signal operators, or maintenance personnel.
  • Non-Railway Staff: Other human errors include those by road users (such as disregarding level crossing signals), passengers (such as tampering with safety equipment), or miscreants (such as vandalism).

3. Signal Failure

  • Equipment Issues: Defective or damaged track circuits, axle counters, and other signaling equipment can result in signal failures. This is a significant issue as it can lead to incorrect signaling and coordination problems.
  • Case Study: The Balasore train collision in 2023 was a notable example where faulty signal circuit modifications led to incorrect signaling and a catastrophic accident.

4. Fire Accidents in Coaches

  • Passenger Behavior: Inflammable materials carried by passengers, such as flammable liquids or explosive substances, can be a risk.
  • Technical Failures: Short circuits in the electrical systems or failures in safety equipment can spark fires.
  • Negligence: Lack of diligence by pantry car staff or contractors responsible for maintaining cleanliness and safety can increase fire risks.

5. Human Resources

  • Workforce Shortages: Indian Railways faces a significant shortage in safety-critical roles, with around 20,000 vacancies in positions such as loco crew, train managers, and station masters. These vacancies can strain existing staff and potentially compromise safety.

Step Taken

1. KAVACH System

  • Overview: KAVACH is an Indigenous Automatic Train Protection (ATP) system designed to improve safety, especially for high-speed trains and in foggy conditions.
  • Features: It includes Cab Signalling, which helps in monitoring train movements and preventing collisions.
  • Deployment: As of February 2024, KAVACH has been implemented on 1465 route kilometers and 139 locomotives (including Electric Multiple Unit rakes) in the South Central Railway zone.

2. Rashtriya Rail Sanraksha Kosh (RRSK)

  • Introduction: Launched in 2017-18.
  • Purpose: A Rs. 1 lakh crore fund dedicated to upgrading critical railway safety infrastructure over a five-year period.

3. Infrastructure Upgradation

  • Interlocking Systems: Implementation of Electrical/Electronic Interlocking Systems at stations for centralized operation of points and signals.
  • Level Crossing (LC) Gates: Interlocking of Level Crossing Gates to enhance safety at crossings.

4. Use of New Technology

  • GPS-based Fog Safety Devices: These devices alert locomotive pilots to upcoming signals and crossings in fog-prone areas, improving safety during low visibility conditions.

5. Elimination of Unmanned Level Crossings

  • Objective: All unmanned level crossings (UMLCs) on Broad Gauge (BG) routes were eliminated by January 2019, reducing the risk of accidents at these crossings.

6. Safety Information Management System (SIMS)

  • Purpose: To provide a faster and more efficient system for accident reporting, analysis, and sharing of information.
  • Development: A web-based application developed by the Safety Directorate of the Railway Board in 2016.

7. Use of Fire Retardant Materials

  • Implementation: Adoption of fire retardant materials for interior furnishing (wall paneling, flooring, roof paneling, etc.) in trains to minimize the risk of fire accidents.

These steps collectively aim to enhance railway safety, reduce accidents, and ensure a safer travel experience for passengers.

About KAVACH SYSTEM

The KAVACH system is an advanced train collision avoidance technology designed to enhance safety on the railway network. Here's a detailed explanation of its working mechanism:

  1. Network of Devices:
    • KAVACH involves a network of devices installed on two trains that are moving towards each other. These devices continuously monitor and exchange critical information to prevent potential collisions.
  2. Radio Frequency Identification (RFID):
    • Each train is equipped with RFID tags that store and transmit information. These RFID tags are used to uniquely identify the trains and communicate their positions to the KAVACH system.
  3. Global Positioning System (GPS):
    • GPS technology is employed to track the exact location of each train in real-time. This data is crucial for determining the trains' trajectories and assessing the risk of collision.
  4. Collision Risk Assessment:
    • The KAVACH system uses the GPS data to calculate the positions and movements of the trains. It assesses whether the trains are on a collision course by analyzing their speed, direction, and proximity.
  5. Automatic Braking System:
    • When the system detects a collision risk based on the assessed data, it automatically initiates the braking system on the trains. This automatic activation of the brakes helps to slow down or stop the trains before a collision occurs.
  6. Continuous Monitoring and Communication:
    • The devices on the trains continuously exchange information with each other through RF signals. This ongoing communication ensures that any change in the trains' status is promptly addressed, and collision risk is re-evaluated in real-time.
  7. Safety Mechanism:
    • The KAVACH system acts as a last line of defense. Even though it is supported by other safety measures, its automatic braking feature provides an additional layer of protection against accidents.

Global best practices in train control systems

Europe: European Train Control System (ETCS)

  • Overview: ETCS is part of the European Rail Traffic Management System (ERTMS), designed to ensure interoperability between different national rail systems across Europe. It standardizes signalling and control to enhance safety and efficiency.
  • Benefits:
    • Safety: Reduces the risk of accidents by providing automatic braking and train protection features.
    • Efficiency: Facilitates seamless cross-border rail operations and optimizes train scheduling and traffic management.
    • Cost: Potentially lowers infrastructure costs by reducing the need for multiple national systems.

United Kingdom: Train Protection and Warning System (TPWS)

  • Overview: TPWS is a safety system developed to prevent train accidents resulting from human error, such as passing red signals or speeding in dangerous areas.
  • Benefits:
    • Safety: Automatically applies the brakes if a train approaches a signal at danger or exceeds speed limits in critical zones.
    • Operational Safety: Enhances the safety of the existing signalling infrastructure without requiring a complete overhaul.
    • Incremental Improvement: It can be integrated into existing systems, making it a cost-effective solution for enhancing safety.

Japan: Automatic Train Control (ATC)

  • Overview: ATC is a comprehensive system used to regulate train speeds and maintain safe operations based on signal data. It is widely used in Japan’s dense and highly efficient rail network.
  • Benefits:
    • Safety: Ensures trains adhere to speed limits and signal indications, preventing collisions and derailments.
    • Efficiency: Enhances the ability to manage high-frequency train operations with precise control over train speeds.
    • Reliability: Contributes to Japan's reputation for punctuality and operational excellence in rail transport.

Way Forward for Railway Safety Improvement

1. Establishment of Railway Safety Authority:

  • Recommendation: Following the Kakodkar Committee’s recommendations, it is imperative to create a statutory Railway Safety Authority. This body should have comprehensive powers to oversee railway operations, ensuring safety is maintained independently of the Railway Board, which currently handles rule-making, operations, and regulation.
  • Objective: To enhance safety oversight and accountability, segregating the regulatory functions from operational management.

2. Development of a Detailed Outcome Framework:

  • Recommendation: Based on the CAG’s 2021 report on derailments, there is a need to develop a ‘Detailed Outcome Framework’ for safety projects funded by the Rashtriya Rail Sanraksha Kosh (RRSK).
  • Objective: This framework will systematically evaluate the effectiveness of safety initiatives and ensure that the allocated funds achieve their intended safety improvements.

3. Leveraging AI-enabled Applications:

  • Recommendation: Implement AI-driven solutions to analyze extensive datasets from stations and trains. AI can identify potential safety issues and alert railway management in real-time.
  • Objective: To enhance safety monitoring and response through advanced data analysis, ensuring timely interventions.

4. Defining Track Safety Tolerances:

  • Recommendation: As per the Khanna Committee’s suggestion, the Research Design & Standards Organisation (RDSO) should establish safety tolerances for various track speeds and categories. This involves studying global best practices and rail-wheel interactions.
  • Objective: To set precise safety standards for different track conditions, improving overall track safety and performance.

5. Implementation of Best Practices:

  • Recommendation: The Automatic Train Protection Systems used in Mumbai’s suburban network have proven effective. These systems should be adopted and adapted for broader use across the nation.
  • Objective: To standardize and enhance train safety practices nationwide, drawing on successful existing models.

Understanding the Auditing of Local Bodies

Why is it in the News? The International Centre for Audit of Local Governance (iCAL) was recently inaugurated in Rajkot, Gujarat. This marks a significant step towards setting global standards for
Share It

Bavikonda Monastery: A Historical and Cultural Gem

Current Status Maintenance Issues: Due to recent budget constraints, maintenance and repairs at Bavikonda Monastery have been less than optimal. Tourism Circuit: Bavikonda is part of the '
Share It

CITES Report on Rosewood: “CITES Rosewoods: The Global Picture”

The recently released CITES report titled “CITES Rosewoods: The Global Picture” provides a comprehensive analysis of rosewood species listed under the Convention on International Trade in
Share It

Codex Alimentarius Commission (CAC)

Recent Developments  India recently took part in the 86th session of the Executive Committee (CCEXEC) of the Codex Alimentarius Commission (CAC) held in Rome. India’s Support: Sp
Share It

Naturally Existing DNA Editing Tool: Bridge Recombinase Mechanism (BRM)

The Bridge Recombinase Mechanism (BRM) is a newly discovered naturally occurring DNA editing tool. It utilizes mobile genetic elements, commonly known as "jumping genes," to perform DNA mani
Share It

The Delhi Urban Land and Immovable Property Records Bill, 2024

The Delhi Urban Land and Immovable Property Records Bill, 2024, aims to create a unified system for managing urban land and immovable property records in Delhi. This system will be overseen by the Del
Share It

Gig Economy and Recent Developments in Karnataka

Why in the News? The Karnataka government recently published the draft Karnataka Platform-based Gig Workers (Social Security and Welfare) Bill, which aims to address the welfare and rights of gig w
Share It

India-Japan Joint Carbon Crediting Mechanism

India and Japan are set to sign a Memorandum of Cooperation (MoC) to establish a Joint Crediting Mechanism (JCM) under the framework of Article 6.2 of the Paris Agreement. This mechanism will facilita
Share It

Green Revolution in maize

Context: India has seen significant success with the green revolution in maize production. This success has been primarily driven by the private sector. Over the past 20 years, maize production in Ind
Share It

Captain Supreetha C.T. – First Woman Officer from Corps of Army Air Defence at Siachen Glacier

Name: Captain Supreetha C.T. Hometown: Mysuru, Karnataka Achievement: Captain Supreetha C.T. has become the first woman officer from the Corps of Army Air Defence to be operationally deployed a
Share It

Newsletter Subscription


ACQ IAS
ACQ IAS